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Etudier la mécanique

1.1 Introduction

Le cours ex-cathedra est constitué de quatorze lecons hebdomadaires de trois heures qui
seront consacrées a développer la théorie de la mécanique et d'une heure dédiée aux appli-
cations de cette théorie. La théorie sera bien str vérifiée par de belles expériences préparées
avec soin par les préparateurs de cours des auditoires de physique. Les cours seront divisés
en trois sections d’environ une heure chacune.

Pour mieux comprendre les notions théoriques vues au cours et savoir les appliquer dans
des cas concrets auxquels vous serez confrontés dans votre future carriere d’ingénieur, vous
aurez des sessions hebdomadaires de tutorat durant lesquelles vous aurez une série d’exercices
a résoudre. Toutes les informations utiles concernant ce cours sont disponibles sur le site
moodle de ce cours.

1.1.1 Histoire

La racine grecque du mot mécanique est unfavikn, c’est-a-dire michaniki, qui signi-
fie relatif auxr machines. L’origine du mot mécanique a donc une signification utilitaire.
Il s’agit de développer une science qui permet de faire fonctionner des machines. En
termes plus modernes, la mécanique est la branche de la physique qui étudie 1’équilibre
des systemes physiques, c’est-a-dire la statique, leur mouvement, c’est-a-dire la dynamique,
et leur déformation.

Lorsqu’on aborde 1’étude de la mécanique, on se pose naturellement deux questions fon-
damentales. La premiere est : “Qu’est-ce que la mécanique ?” et la seconde est : “Pourquoi
est-ce qu’on commence l’étude de la physique par la mécanique ?” Il y a deux réponses a
cela. La premiere est historique et la seconde est méthodologique et pédagogique.

La raison historique est que la mécanique a permis a la science moderne de naitre. Les
premieéres lois physiques qui ont pu étre découvertes sont les lois de Newton. En ayant
bien compris les lois de mécanique, les physiciens des siecles passés ont ensuite peu a peu
découvert les autres lois physiques. La mécanique est en somme le fondement de la physique.

La raison pédagogique est que la mécanique est la branche de la physique qui est la
plus intuitive et la plus facile a modéliser mathématiquement. La mécanique décrit des
expériences qui font partie de la vie de tous les jours, comme une chute sur un plan incliné,
des ressorts, des pendules ou des montres mécaniques. La mécanique introduit des lois de
cause a effet qui permettent de décrire mathématiquement I’évolution d’un systéme physique
simple. Elle permet donc de se familiariser avec I’emploi des mathématiques comme langage
universel de 'ingénieur. Elle répond donc a 1’objectif principal de ce cours de mécanique qui
est de savoir mettre sous forme mathématique un phénomene physique.

Le but de cette introduction a la mécanique est de vous montrer pourquoi la mécanique est
importante pour votre formation. Pour ce faire, je vous propose une perspective historique
qui met en évidence le role de la mécanique dans le développement des sciences modernes.

Commengons en examinant les conclusions d’Aristote. Aristote a été le disciple de Platon
pendant 20 ans. Fortement inspiré sur le plan philosophique par son maitre, Aristote a conclu,
dans son livre De la Physique, qu’il fallait distinguer le monde terrestre corrompu du monde
céleste parfait. Le mouvement des corps célestes est un cercle parfait alors que le mouvement
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des corps terrestres est capricieux. Selon Aristote, les lois physiques qui régissent le mouve-
ment des corps terrestres et célestes sont de nature différente. Elles sont irréconciliables. Le
défaut de la méthodologie d’Aristote réside dans le fait qu’elle n’est pas vraiment scientifique.
La méthodologie scientifique nécessite une interaction entre la théorie et ’expérience. Aris-
tote n’a pas essayé d’interroger la nature, il lui a imposé ses présupposés philosophiques... Il a
développé sa théorie dans sa tour d’ivoire et ne I’a pas proprement confrontée & I’expérience.
Il a fallu attendre presque deux millénaires pour que ce paradigme aristotélicien soit remis
en cause.

Le nouveau paradigme a commencé a émerger au XVI° siecle grace notamment aux tra-
vaux de Galileo Galilei dit Galilée. Galilée est un des pionniers de I’expérimentation scienti-
fique de la nature. En faisant interagir I’expérience et la théorie, Galilée permet a la science
moderne de naitre. Il fallait un langage pour interroger la Nature et ce langage, c’est celui des
mathématiques. Par ses observations, il conclut que le mouvement rectiligne uniforme d’un
corps est son mouvement naturel. Toute déviation de cette uniformité est attribuée a une
force. Ceci est a été qualifié de principe d’inertie. Galilée définit également le mouvement rec-
tiligne uniformément accéléré. Pour lui, cette définition est utile, parce qu’elle représente un
mouvement qui s’observe dans la nature : la chute des corps. Il démontre expérimentalement
que le mouvement de chute libre est bien un mouvement uniformément accéléré. Galilée a
également prédit que dans le vide, une plume tomberait a la méme vitesse qu'une masse de
plomb. Cette expérience a été réalisée apres sa mort par son disciple Torricelli et le résultat
a été concluant. Lors de la mission spatiale Apollo 15, cette expérience a été effectuée avec
une plume et un marteau devant des millions de téléspectateurs. Galilée est le pere de la
cinématique et le grand-pere de la dynamique. Sans lui, Newton n’aurait probablement pas
pu découvrir les lois de la dynamique.

Un autre personnage important dans le développement de la science est Johannes Kepler.
Kepler s’est autant intéressé a I’astronomie qu’a ’astrologie. En se basant sur les observations
précises de Tycho Brahé sur les orbites planétaires, Kepler a déduit trois lois mathématiques
régissant la mécanique céleste, c’est-a-dire le mouvement des planetes autour du soleil. La
premiere loi est la loi des orbites. Elle stipule que les planetes du systeme solaire se déplacent
selon des orbites elliptiques dont le Soleil occupe I'un des foyers. La deuxieme loi est la loi
des aires. Elle stipule que 'aire balayée par unité de temps par le mouvement de la planete
autour du soleil est une constante. La troisieme loi est la loi des périodes. Elle stipule que le
rapport de la période de rotation au carré divisé par le demi-grand axe de ’ellipse au cube
est une constante. Ces lois de la mécanique céleste de Kepler sont un exemple absolument
remarquable de modélisation mathématique a partir de données expérimentales. Elles ont
joué un role central dans la découverte de la loi de la gravitation universelle par Newton.

Isaac Newton est probablement le plus grand physicien de tout les temps. Newton a
fait des études de mathématiques au Trinity College a Cambridge. A 1’aide du principe
d’inertie de Galilée et des lois de Kepler, Newton découvre les lois de la mécanique et
les expose dans son célebre livre Philosophiae Naturalis Principia Mathematica, ¢’est-a-
dire les principes mathématiques de la philosophie naturelle. Pour énoncer ces lois, il pose
les bases du calcul différentiel et intégral. Newton est un génie sans égal tant sur le plan
mathématique que sur le plan physique! Grace & Newton, la mécanique est devenue une
théorie physique clairement exprimée dans le langage des mathématiques. De plus, le calcul
différentiel et intégral de Newton permet de faire des prédictions en déterminant les solutions
mathématiques de la théorie physique de Newton. Si un jour vous vous rendez a Cambridge,
je vous recommande de visiter la Wren Library ol vous trouverez un exemplaire original
des Principia Mathematica avec une boucle de cheveux dorés de Newton. Vous pourrez
ensuite voir sa statue dans la chapelle du College. Pour ’anecdote, le meilleur étudiant de
premiere année en mathématiques du Trinity College & Cambridge a le privilege de choisir
sa chambre d’étudiant pour la deuxieme année de ses études. La tradition veut qu’il choisisse
la chambre ot Newton a lui-méme fait ses études, qui surplombe le pommier qui selon la
légende a fortement inspiré le jeune Isaac.


https://fr.wikipedia.org/wiki/Galileo_Galilei
https://fr.wikipedia.org/wiki/Johannes_Kepler
https://fr.wikipedia.org/wiki/Isaac_Newton
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1.1.2 Objectifs

Le principal objectif dans 'apprentissage de la mécanique, c’est d’apprendre a décrire un
phénomene physique en utilisant le langage des mathématiques. L’analyse d’un phénomeéne
physique commence par une modélisation d’un systeme physique sur le plan conceptuel.
Cette modélisation doit étre formalisée de maniere claire. Pour ce faire, on utilise le lan-
gage universel des mathématiques. On transcrit donc le modele du phénomene physique
sous forme mathématique. On applique alors les lois physiques et on aboutit a un systéme
d’équations différentielles qui régissent I’évolution dans le temps du systeme étudié.

Il est essentiel d’apprendre a reconnaitre les limites d’applicabilité des modeles et des
théories physiques qu’on utilise. Par exemple, on commencera notre étude de la mécanique
avec le modele du point matériel et on se posera la question de savoir dans quelle mesure
on peut se contenter de ce modele. Un cours de mécanique n’est pas un cours qui exige de
mémoriser un grand nombre de lois ou d’équations. C’est un savoir-faire qu’on développe
progressivement en essayant de modéliser mathématiquement toute une série d’expériences
physiques choisies, comme la collision d’une balle de fusil sur une cible ou la destruction
d’un verre par résonance acoustique (Fig. 1.1).

FI1GURE 1.1 Lorsque la cible est en verre, la balle de fusil conserve sa quantité de mouve-
ment. Lorsque la cible est en bois, la balle de fusil transmet sa quantité de mouvement & la
cible. Lorsque le verre est excité acoustiquement a ’aide d’un haut-parleur a sa fréquence
de résonance, il est d’abord déformé puis, il se casse.

Sur le plan pratique, c’est d’abord en résolvant des problémes concrets qu’on apprend
vraiment la mécanique. Je vous encourage donc vivement de participer a toutes les sessions
d’exercices et d’essayer, autant que possible, de résoudre les exercices par vous-méme. On
vous apprend aussi & adopter une démarche systématique. Il ne s’agit pas de repérer I’astuce
subtile qui permet d’obtenir le bon résultat le plus efficacement. Non! Il s’agit d’appliquer
systématiquement ’approche tout-terrain qu’on va élaborer dans ce cours.

Dans un cours de mécanique, on apprend a utiliser des outils mathématiques en de-
hors du contexte mathématique dans lequel ils sont normalement enseignés. On verra que
cela n’est pas toujours évident. Il arrive souvent qu’un enseignant de physique utilise un
outil mathématique qui n’a pas encore été vu formellement par ses étudiants dans le
cadre d’un cours de mathématiques. Quand cela m’arrivera, j’introduirai proprement 1’outil
mathématique en question. Ce sera pour vous l’occasion d’étre sensibilisé a 'importance
de cet outil mathématique et d’étre motivé quand le sujet surviendra dans un cours de
mathématiques. Vous pourrez ainsi découvrir les mathématiques de maniere ludique par la
physique.

1.1.3 Limites

Etudier la mécanique, c’est s’inscrire dans une longue tradition scientifique. La mécanique
de Newton a triomphé durant trois siecles, mais a la fin du XIX® siecle, son universalité a
été remise en cause. Son domaine d’applicabilité est toujours encore tres important, mais il
n’est pas universel.

L’immense succes de la mécanique de Newton a laissé penser aux physiciens que toute
réalité physique pouvait étre expliquée de maniére déterministe. Ce déterminisme triom-
phant est bien illustré par le Marquis Simon de Laplace qui aurait affirmé a Iempereur
Napoléon Bonaparte : “Donnez-moi les conditions initiales et je vous prédirai I’évolution du


https://www.youtube.com/watch?v=47cPhhywvOo
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monde” . Laplace était convaincu qu’un jour on disposerait d’une équation qui puisse prédire
entierement 1’évolution du monde a partir des conditions initiales.

A la fin du XIX¢ siecle, Henri Poincaré a montré que les équations différentielles décrivant
des systemes physiques tres simples peuvent avoir des solutions treés complexes. 11 faudra
attendre 1960 pour que ces idées se popularisent notamment par Edward Lorenz et David
Ruelle sous le nom de théorie du chaos. Deux pendules articulés ou une balle de ping-
pong mise en mouvement par un vibreur régulier peuvent avoir un mouvement chaotique
(Fig. 1.2).

FIGURE 1.2 Si les deux pendules articulés sont lancés avec de faibles amplitudes initiales
comparables, leurs mouvements restent synchronisés. A grandes amplitudes initiales com-
parables, leurs mouvements se désynchronisent tres rapidement. Une balle de ping-pong
rebondit sur une plateforme astreinte a un mouvement périodique bien déterminé. Lorsque
le tube est ouvert, la fréquence des rebonds est aléatoire. Avec le frottement imposé par le
bouchon, le mouvement devient périodique.

Le début du XX siecle est le témoin de deux révolutions physiques qui vont définitivement
remettre en cause l'universalité de la mécanique newtonienne. La relativité restreinte,
développée par Hendrik Antoon Lorentz et Jules Henri Poincaré et finalisée par Albert
Einstein, montre que pour des vitesses suffisamment proches de la vitesse de la lumiere, la
mécanique newtonienne n’est plus valable. Elle doit étre remplacée par la mécanique rela-
tiviste. Vingt ans plus tard, Erwin Schrodinger, Werner Heisenberg et Paul Dirac montrent
qu’a petite échelle la mécanique newtonienne doit étre remplacée par la mécanique quan-
tique.

1.1.4 Expériences

Les expériences ont une importance historique. Depuis Galilée, la physique s’enseigne en
démontrant expérimentalement les phénomenes qu’on veut décrire par des lois.

Les expériences ont aussi une importance symbolique. Les démonstrations d’auditoire nous
rappellent que la physique ne peut pas se construire ex-nihilo. La méthodologie scientifique
consiste en une démarche hypothético-déductive. On fait des hypotheses que l'on vérifie
ensuite expérimentalement. Il ne faut jamais oublier que toute théorie physique se construit
par une confrontation a l'observation des phénomenes naturels! Sinon, vous feriez mieux
d’aller suivre le cours de mathématiques ou le cas échéant celui de philosophie... A ce propos,
il est pertinent de citer la mise en garde de James Clerk Maxwell, le physicien qui a unifié les
phénomenes électriques et magnétiques : “Je n’ai pas de raison de penser que l’intelligence
humaine est capable de conceptualiser les lois physiques en se basant uniquement sur ses
propres ressources sans faire appel aux résultats expérimentaux. De telles tentatives se sont
toujours soldées par des théories artificielles et pleines de contradictions.”

Finalement, les expériences ont une importance méthodologique. En observant une
expérience, on réalise mieux que la mécanique consiste en modeles simples, et parfois trop
simplistes, qui idéalisent une réalité matérielle complexe. L’observation des expériences vous
encourage a repérer ces phénomenes démontrés au cours dans la vie quotidienne, ce qui
constitue un excellent entrainement & la curiosité scientifique.


https://fr.wikipedia.org/wiki/Henri_Poincar%C3%A9
https://www.youtube.com/watch?v=63uVU3GR-qI
https://www.youtube.com/watch?v=RvoBFSuCriw
https://fr.wikipedia.org/wiki/James_Clerk_Maxwell
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1.1.5 Livre

Ce cours est basé sur le livre de Mécanique du Professeur Jean-Philippe Ansermet publié
aux Presses polytechniques et universitaires romandes (2e édition largement remaniée en
2013). Les références a ce livre sont données au début de chaque section. Je vous recommande
donc vivement de vous en procurer une copie.

1.1.6 MOOC

L’acronyme MOOC désigne en anglais un Massive Open Online Course. En francais,
I'acronyme est CMELL et désigne un Cours Massif en Ligne Libre. Ces cours sont en acces
libres dans le monde entier et des milliers d’étudiants les suivent. Les deux plus grandes
plateformes de MOOC sont Coursera, géré par une start-up de Stanford, et EdX, géré
par une start-up du MIT. Le Professur Ansermet, qui a été le directeur de la section de
physique et qui a enseigné la mécanique pendant plus de vingt ans a 'EPFL a lancé un
MOOC de mécanique en francais sur Coursera. Ce cours couvre ’équivalent du programme
de mécanique de la section de physique, c’est-a-dire un cours de quatre heures par semaine
durant un semestre. Le cours que je vous donne a une structure proche de celle du MOOC,
mais certains sujets avancés comme la relativité et la mécanique analytique ne seront pas
abordés dans ce cours. C’est la raison pour laquelle, je vous encourage donc de vous inscrire
sur Coursera et de suivre le MOOC.

1.2 Calcul différentiel

La dérivation permet de déterminer le taux de variation d’une fonction lorsqu’on varie
la variable dont elle dépend. On appelle dérivée la limite infinitésimale du rapport de la
variation de la fonction et de la variation de la variable correspondante.

1.2.1 Dérivées d’une fonction

Dans le contexte de la mécanique, on cherche le plus souvent & déterminer 1’évolution
temporelle d’un systeme. On considere donc ici des fonctions du temps ¢ qu’on suppose étre
un parametre réel continu, c’est-a-dire t € R. A titre d’exemple, on choisit comme fonction du
temps ¢ la coordonnée de position z (¢) le long d’un axe fixe. On suppose que la coordonnée de
position est une fonction continue et deux fois dérivable, c’est-a-dire x (t) € C? (R). La vitesse
scalaire v (t) le long de I'axe de coordonnée est définie comme la dérivée de la coordonnée
de position z (t) par rapport au temps t. Elle s’écrit explicitement comme,

Az (t) . z(t+ At) —z(¢)

v(t) = lim == = limg At (1.1)

Les physiciens utilisent la lettre d pour représenter la limite infinitésimale d’une variation
A. L’expression (1.1) de la vitesse v = v () peut donc étre écrite comme,
_dx  x(t+dt) —x(t)
T at dt
Géométriquement, la dérivée v (t) représente la pente de la tangente & la fonction z (t) au
temps t (Fig. 1.3).
En effet, dans la limite d’une variation infinitésimale, I'intervalle de temps At se réduit a

ainsi dx =wvdt (1.2)

Pintervalle de temps infinitésimal dt et la variation de coordonnée Ax se réduit a la variation
infinitésimale de position dz. Compte tenu de 1’équation (1.2), on a montré que dx = v dt,
ce qui implique que la vitesse scalaire v est bien la pente de la dérivée de la coordonnée de
position z.
L’accélération scalaire a (t) le long de ’axe de coordonnée est définie comme la dérivée de
la vitesse scalaire v (t) par rapport au temps ¢ qui s’écrit explicitement comme,
Av (t) . v(t+AL) —v(t)

U= A AT A (3

Mécanique
(parties 1, 2, 3)

MOOC


http://www.ppur.org/produit/478/9782889150243
https://issuu.com/ppur-epflpress/docs/mecanique-1?e=18780271/30292110
https://issuu.com/ppur-epflpress/docs/mecanique-2?e=18780271/30293648
https://issuu.com/ppur-epflpress/docs/mecanique-3?e=18780271/30292027
https://www.coursera.org/learn/mecanique-newton
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()
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x(t—!—At) ------------------- hl
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O t t+AL

FIGURE 1.3 La vitesse scalaire v (f) est la pente de la tangente & la fonction coordonnée
de position z (t) au temps .

En notation de physicien, I’accélération scalaire a = a (t) s’écrit comme,

d t+dt)—v(t
_ W w ainsi dv=adt (1.4)

“=u dt

L’accélération scalaire a (t) est donc la dérivée seconde de la coordonnée de position x (¢).
En substituant I’expression (1.1) de la vitesse dans celle de 1’accélération (1.3), on obtient,

. Ax(t) dz (t)
dr A <A1?30 At ) d ( dt
—— = lim =

dt2 ~ Ai=0 At dt

a(t)=

(1.5)

En notation de physicien, l'accélération scalaire a = a (t) s’écrit explicitement comme,

d (dzx d\*
a = — _ = —_ r = —F (]“6)

dt \ dt dt dt?
Pour les dérivées d'une fonction par rapport au temps t, et uniquement par rapport au
temps, les physiciens utilisent une notation abrégée qui consiste a remplacer la fraction par

un point. Compte tenu des expressions (1.2), (1.4) et (1.6), en notation abrégée la vitesse
scalaire s’écrit,

v = [L‘ (1.7)
et I'accélération scalaire s’écrit,

a=1b=i (1.8)

1.2.2 Dérivée d’une composition de fonctions

En mécanique on est souvent confronté a des compositions de fonctions du temps dont on
doit déterminer la dérivée par rapport au temps. On considere a présent le cas ou la fonction
h (t) est une composition de fonctions qui est définie comme la composition d’une fonction
f (g) et d’une fonction g (t), c’est-a-dire

h(t)=(fog) )= [(g9(t)) (1.9)
La dérivée de la fonction g (t) par rapport au temps s’écrit,

dg _g(t+d)—g(t

e g ainsi g{t+dt)=g(t)+dg (1.10)

De maniére similaire, la dérivée de la composition de fonctions f (g) par rapport & la fonction
g s’écrit,
df _ flg+dg)— f(9)

d
dg dg ainsi  f(g+dg)=f(g9)+df =f(g)+ édg (1.11)
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Compte tenu des expressions (1.10) et (1.11), la dérivée de la composition de fonctions x (¢)
par rapport au temps s’écrit,

df
dh flgtrd))— Flg(t)  flgt)+dg) — flg(r) Tt gy 00— Lettl

dt dt o dt dt

(1.12)

Par conséquent, la dérivée de la composition de fonctions h () par rapport au temps ¢ nous

donne la régle de la dérivation en chaine de la composition de fonctions f (g (t)) par rapport
au temps t,

dh _d(fog) _df dg

dt —  dt  dgdt

A présent, on va considérer deux applications physiques de cette dérivation d’une com-

(1.13)

position de fonctions. La premiere est un oscillateur harmonique & une dimension dont la
coordonnée de position est définie comme,

x (t) = Acos (wt + ) (1.14)

ou A est amplitude d’oscillation, w est la pulsation et ¢ est 'angle de déphasage. Les
grandeurs A, w et ¢ sont des constantes. En appliquant la régle de dérivation (1.13) on
obtient la vitesse d’oscillation,

dr  d(Acos(wt+¢)) d(wt+¢) )
i (ot £ ) 7 = — Awsin (wt + ) (1.15)

La seconde est 1’énergie cinétique d’un objet de masse m constante en translation le long de
l'axe de coordonnée x (t),
1

T(t) = 5mg’;2 (1.16)

En appliquant la régle de dérivation (1.13) on obtient la puissance mécanique appliquée sur

I’objet,
1,
d7T d (2 ma ) 4

_ tad . . 1.1
dt di dt LB (1.17)

force vitesse

1.2.3 Développement limité d’une fonction

Le développement limité d’une fonction, aussi appelé le développement de Taylor
d’une fonction en référence au mathématicien Brook Taylor, est une approximation de I'ex-
pression d’une fonction dans le voisinage d’une valeur fixée de la variable.

Compte tenu des équations (1.1) et (1.2), la dérivée de la fonction f (z) par rapport a la
variable x s’écrit,

& ftdn)-f@) et An) - (@)
dr dx " Az—0 Ax

(1.18)

Ainsi, la fonction f (z + dz) évaluée a l'instant z + dx s’exprime en terme de la fonction
f (z) évaluée a l'instant z comme,
df

f(z+dz) :f(z)+%dx (1.19)

Dans cette expression, il n’y a pas d’approximation puisque l'intervalle dx est infinitésimal.
On désire trouver une expression analogue lorsque l'intervalle Az n’est pas infinitésimal.
Dans le cas ou l'intervalle Ax n’est pas infinitésimal mais suffisamment petit, c’est-a-dire
Az < x, on peut faire 'approximation suivante pour la dérivée,

df _ flz+Az)— f(z)

~ 1.2
dx Ax (1.20)

Dans ce cas, la relation (1.20) multipliée par Az nous conduit a ’approximation suivante,

~ df
flo+Aa) = f(0)+ o Aa (1.21)

Brook Taylor


https://fr.wikipedia.org/wiki/Brook_Taylor
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appelée développement limité, ou développement de Taylor, au premier ordre en Ax de la
fonction f (x + Az) autour de z.

1.3 Calcul vectoriel

A présent, on va introduire les outils de géométrie vectorielle dont on a besoin pour faire
de la mécanique. Les grandeurs cinématiques comme la position, la vitesse et 'accélération
sont des grandeurs vectorielles, car elles sont caractérisées par une norme et une orientation
spatiale. Il y a deux moyens de multiplier des vecteurs; soit on obtient un scalaire soit
un autre vecteur. Le premier produit s’appelle un produit scalaire et le second un produit
vectoriel.

Le produit vectoriel a été introduit par Josiah Willard Gibbs afin de pouvoir décrire les
rotations dans le cadre d’un espace vectoriel. L’espace vectoriel n’est pas nécessairement le
cadre mathématique le plus adapté pour I'étude de la cinématique et de la dynamique. On
pourrait aussi ’étudier dans le cadre de I’algebre géométrique qui permet de mieux visualiser
les phénomenes mais présente le désavantage d’étre moins répandu et parfois plus ardu et
subtil pour les manipulations algébriques. Cependant, ici on va se restreindre a l’espace
vectoriel.

1.3.1 Repeéere direct

Dans la pratique, on a souvent besoin d’exprimer un vecteur en termes de ses composantes
projetées dans un repere. Dans ’espace, un repére est une entité géométrique constituée de
trois vecteurs non-nuls et non-colinéaires attachés a un point. Un repere est orthonormé si
les trois vecteurs sont orthogonaux et de norme unité. Ces vecteurs n’ont pas de dimension
physique. Un repeére orthonormé est un repére direct s’il satisfait la regle de la main droite,
c’est-a-dire que si le premier vecteur est orienté selon 'index de la main droite et que le
deuxieme vecteur est orienté selon le majeur de la main droite alors le troisieme vecteur est
orienté selon le pouce de la main droite. Cette orientation particuliere s’appelle la chiralité
dextrogyre. Le choix de la main est une convention historique. On aurait tout aussi bien pu
choisir la regle opposée de la main gauche obtenue par image miroir. Un repere qui satisfait
la regle de la main gauche est un repere indirect. Dans ce cours, on considérera que des
reperes directs. Les reperes peuvent étre fixes ou mobiles suivant que leurs points d’attache
et leur orientation changent ou non.

Les scalaires sont des nombres, les vecteurs sont des éléments de droite définis par une
norme et une orientation et les tenseurs — de rang 2 — sont des applications linéaires qui
envoient des vecteurs sur d’autres vecteurs. Il est donc utile de les distinguer. Dans ce cours,
on adoptera la convention de notation usuelle en mécanique et en physique qui consiste a
écrire les scalaires en police normale, les vecteurs en gras et les tenseurs en sans-serif.

I3

T

Zy )

FIGURE 1.4 Repere cartésien direct (&1, &2, &3).
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Un repére cartésien direct s’écrit mathématiquement comme (&1, &o, &£3) ou &1, &o et
&3 sont les vecteurs de base fixes, de norme unité et orthogonaux entre eux. Ces vecteurs
satisfont la régle de la main droite (Fig. 1.4).

Une convention équivalente consiste a considérer la régle du tire-bouchon. Si le mouve-
ment de rotation s’effectue dans un plan du vecteur &, vers le vecteur &, alors le tire-bouchon
s’enfonce dans la direction définie par le vecteur &3.

1.3.2 Produit scalaire

Le produit scalaire de deux vecteurs est un scalaire obtenu par produit symétrique
des coordonnées identiques de ces vecteurs exprimées par rapport a un repere direct. On
considere deux vecteurs a et b exprimés comme combinaisons linéaires des vecteurs de base
du repere cartésien direct (&1, &2, £3),

a=a1 & +as®s +asd
1)\1 2’\ 2 3’\ 3 (122)
b=0b L1 +byZo + b3Z3

ou (ay,as,as) et (b1, bs,bs) sont les coordonnées cartésiennes de ces vecteurs. Le produit
scalaire entre les vecteurs a et b s’écrit,

a-b=ai b +axby+azbs (123)

ce qui implique que le produit scalaire est commutatif, c’est-a-dire qu’on peut échanger
I’ordre des vecteurs sans changer I’expression du produit scalaire,

a-b=b-a (1.24)

En substituant les expressions (1.22) des vecteurs a et b, exprimés comme combinaisons
linéaires des vecteurs de base &1, &2 et &3 du repére cartésien, dans la définition (1.23)
du produit scalaire, on conclut que le produit scalaire des vecteurs de base est de la forme

suivante,
T - Tj = 0y Vi,j=1,2,3 (1.25)
ou le symbole de Kronecker est un scalaire défini comme
1 si i=j
5y = L (1.26)
0 si i#]

Afin d’établir quelques propriétés importantes du produit scalaire, on peut considérer en
toute généralité que les vecteurs a et b ont la méme origine. Le vecteur a peut s’écrire
comme la somme vectorielle d'un vecteur a parallele au vecteur b et d'un vecteur a
perpendiculaire au vecteur b,

a=a|+aL (1.27)

On oriente le repére cartésien (&1, &2, &3) tel que le vecteur b est colinéaire au vecteur &o,
le vecteur a est dans le plan engendré par les vecteurs &1 et &o et I'orientation du vecteur
I3 est définie par la regle de la main droite. On prend l'origine O a lintersection entre les
vecteurs @ et b. On dénote 0 'angle entre les vecteurs a et b, et ||a|| et ||b]| leurs normes
(Fig. 1.5). Dans le repeére cartésien, les vecteurs a et b s’écrivent,

a = ||la||sinf &1 + ||al|| cos b &2

b= |b] 2 12
La définition (1.25) du produit scalaire des vecteurs de base implique alors que,
a-b=|al|bl] cosb (1.29)
Les parties parallele et perpendiculaire du vecteur a s’écrivent,
a| = |la| cos 0 & et a) = |lal/sinf & (1.30)

On tire alors les trois propriétés suivantes,

(i) a-a=]|al? (i) aj-b=a-b (iii) ay -b=0 (1.31)

Regle du tire-bouchon


https://www.youtube.com/watch?v=LHE--4fYUgY

William Kingdon
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b

FIGURE 1.5 Produit scalaire des vecteurs a et b.

1.3.3 Produit vectoriel

Le produit vectoriel de deux vecteurs est un vecteur obtenu par produit antisymétrique
des coordonnées cartésiennes différentes de ces vecteurs et d’'un autre vecteur de base du
repere cartésien direct (&1, &2, &3). Le produit vectoriel entre les vecteurs a et b s’écrit,

axb= (CLQ bs — as bg) x + (CL3 b1 — a1 b3) To + (a1 by — a9 bl) T3 (1.32)

Cela implique que le produit vectoriel est anticommutatif, c’est-a-dire qu’en échangeant
I’ordre des vecteurs on change son signe,

axb=-bxa (1.33)

En substituant les expressions (1.22) des vecteurs a et b, exprimés comme combinaisons
linéaires des vecteurs de base &1, &2 et &3 du repere cartésien, dans la définition (1.32) du
produit vectoriel, on conclut que le produit vectoriel des vecteurs de base est de la forme
suivante,

j:z' X fi?j = €ijk fi)k A i,j, k= ]., 2, 3 (134)

ol les composantes du tenseur completement antisymétrique de Levi-Civita sont des scalaires
définis comme

1 pour €123, €231, €312
€ijk = 4 —1 pour €331, €213, €132 (1.35)

0 sinon

Par conséquent, &; X &; = 0 pour tout ¢ = 1, 2, 3. De nombreux auteurs utilisent le symbole
A au lieu du symbole x pour représenter le produit vectoriel. On ne va pas adopter cette
convention ici étant donné que le symbole A est réservé au produit extérieur d’une algebre
géométrique, aussi appelée algebre de Clifford, alors que le produit vectoriel est défini dans le
cadre d’un espace vectoriel. Le produit extérieur est associatif alors que le produit vectoriel
ne est pas. En effet, la définition (1.32) appliquée aux produits vectoriels des trois vecteurs
implique que,

ax(bxe)#(axb)xec (1.36)

Le produit vectoriel peut étre défini uniquement dans un espace a trois dimensions. Afin
d’établir quelques propriétés importantes du produit vectoriel, on peut considérer en toute
généralité que les vecteurs a et b ont la méme origine. On oriente le repere cartésien
(&1, &2, E3) tel que le vecteur b est colinéaire au vecteur &s, le vecteur a est dans le plan
engendré par les vecteurs &1 et &2 et 'orientation du vecteur &3 est définie par la regle de
la main droite. On prend l'origine O a l'intersection entre les vecteurs a et b. On dénote 0
Pangle entre les vecteurs a et b, et ||a|| et ||b]| leurs normes (Fig. 1.6).

Compte tenu des expressions (1.28) des vecteurs a et b dans le repeére cartésien, la
définition (1.34) du produit vectoriel des vecteurs de base implique alors que,

a x b=al|b|lsiné &3 (1.37)

ou langle 0 est aigu. L’interprétation géométrique de I’équation (1.37) est que la norme du


https://fr.wikipedia.org/wiki/William_Kingdon_Clifford
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axb

FIGURE 1.6 Produit vectoriel des vecteurs a et b.

produit vectoriel de deux vecteurs correspond a la surface du parallélogramme engendré par
ces deux vecteurs et que son orientation est orthogonale a cette surface. Les coordonnées
cartésiennes des vecteurs a et a sont respectivement (0, ||lal|cos,0) et (||a] sin®,0,0).
Compte tenu des relations (1.30), on tire alors les trois propriétés suivantes,

(i) axa=0 (i) ayxb=0 (#i1) a; xb=axb (1.38)

1.3.4 Produit mixte

On considere trois vecteurs a, b et ¢ exprimés comme combinaisons linéaires des vecteurs
de base du repere cartésien direct (&1, &2, £3),

a:a1§:1+a2:%2+a3£3
b=2>0b21+ by Ty + b3 I3 (139)

6261§31+62i2+031ﬁ3

ou (a1, as,as), (by,be,b3) et (c1,ca,c3) sont les coordonnées cartésiennes de ces vecteurs. En
prenant le produit scalaire du vecteur obtenu par produit vectoriel des vecteurs a et b et du
vecteur ¢, on obtient le produit mixte,

(a X b) - Cc= (CLQ b3 — as bg) c1 + (0,3 b1 — a1 bg) Cco + (Cl,l by — as bl) C3 (140)
De la définition (1.40) du produit mixte, on tire alors les deux propriétés suivantes,
(i) (axb)-c=(bxec)-a=(cxa)-b (i) (axb)-a=(axb)-b=0 (1.41)

La propriété (i) est une conséquence du fait que ces trois produits mixtes représentent le
volume du prisme engendré par les vecteurs a, b et ¢, et la propriété (ii) est une conséquence
du fait que le volume d’un prisme de hauteur nulle est nul.

1.3.5 Identité vectorielle

A présent, on va établir une identité vectorielle tres importante pour la suite de ce cours.
A Taide de la définition du produit vectoriel (1.32), on montre que

z
+ (&3 (bgCg — bgcz) — a1 (b162 — b281)> .’f)g (142)
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De plus, & l'aide de la définition du produit scalaire (1.23), on montre également que
(a-c)b—(a-b)c= ((g,yeTJr ascy + azes) by — (arbi + agbs + asbs) cl) 1
+ ((a101 + asex + azcs) by — (a1by + asbs + azbs) 02) Ty (1.43)
+ ((alcl + ases + aszes) by — (a1by + agbs + ashs) 03) 3

En identifiant les équations (1.42) et (1.43) apres simplification, on obtient I'identité vecto-
rielle,

ax(bxe)=(a-¢c)b—(a-b)c (1.44)



	Etudier la mécanique
	Introduction
	Histoire
	Objectifs
	Limites
	Expériences
	Livre
	MOOC

	Calcul différentiel
	Dérivées d'une fonction
	Dérivée d'une composition de fonctions
	Développement limité d'une fonction

	Calcul vectoriel
	Repère direct
	Produit scalaire
	Produit vectoriel
	Produit mixte
	Identité vectorielle


	Cinématique du point matériel
	Cinématique du point matériel
	Point matériel
	Référentiel
	Repère
	Vecteur position
	Trajectoire
	Vecteur vitesse
	Vecteur accélération

	Mouvement rectiligne
	Mouvement rectiligne uniforme
	Mouvement rectiligne uniformément accéléré

	Lois de Newton
	Grandeurs extensives et intensives
	Masse
	Quantité de mouvement
	1ère loi de Newton
	Force
	2e loi de Newton
	Quantité de mouvement et vitesse
	Dynamique du point matériel


	Frottements et balistique
	Forces de frottement
	Frottements secs
	Frottements visqueux

	Balistique sans frottement
	Démarche de résolution
	Poids
	Loi du mouvement balistique
	Repère et conditions initiales
	Equations du mouvement balistique
	Chute libre
	Trajectoire balistique

	Balistique avec frottement
	Loi du mouvement balistique
	Repère et conditions initiales
	Equations du mouvement balistique
	Mouvement balistique horizontal
	Mouvement balistique vertical
	Trajectoire balistique


	Oscillateur et mouvement circulaire
	Oscillateur harmonique
	Force élastique
	Loi du mouvement harmonique oscillatoire
	Equation du mouvement harmonique oscillatoire
	Conditions initiales

	Oscillateur harmonique amorti
	Loi du mouvement oscillatoire harmonique amorti
	Equation du mouvement harmonique oscillatoire amorti
	Amortissement faible
	Amortissement fort
	Amortissement critique
	Conditions initiales

	Mouvement circulaire et vitesse angulaire
	Abscisse curviligne
	Vitesse angulaire scalaire
	Accélération centripète
	Vecteur vitesse angulaire
	Accélération angulaire


	Coordonnées cylindriques et sphériques
	Coordonnées cylindriques
	Repère cylindrique
	Vecteur position
	Vecteur vitesse
	Vecteur accélération

	Coordonnées sphériques
	Repère sphérique
	Vecteur position
	Vecteur vitesse
	Vecteur accélération

	Rotations
	Rotation d’un repère direct mobile
	Formules de Poisson
	Symétries en physique
	Vecteurs polaires et axiaux


	Contraintes et énergie
	Contraintes géométriques
	Force de contrainte

	Pendule mathématique
	Loi et équation du mouvement
	Petites oscillations autour de l'équilibre
	Période d'oscillation générale

	Puissance, travail et énergie cinétique
	Intégrale du mouvement
	Travail
	Energie cinétique
	Théorème de l'énergie cinétique
	Puissance


	Energie et résonance
	Energie potentielle et énergie mécanique
	Energie potentielle
	Energie mécanique
	Energie et puissance dissipées
	Force conservative
	Energie potentielle de pesanteur
	Energie potentielle élastique

	Equilibre et stabilité
	Position d'équilibre et stabilité
	Stabilité du pendule mathématique

	Résonance
	Oscillateur harmonique forcé
	Régimes transitoire et stationnaire
	Réponse harmonique


	Loi d'action-réaction et collisions
	Loi d'action-réaction
	3e loi de Newton
	Forces intérieures et extérieures
	Conservation de la quantité de mouvement
	Chariot propulsé par un boulet

	Collisions
	Types de collision
	Choc élastique
	Choc mou
	Coefficient de restitution

	Problème à deux corps
	Loi du mouvement réduit
	Quantité de mouvement et énergie cinétique
	Référentiel du centre de masse


	Gravitation
	Moment cinétique et moment de force
	Moment cinétique
	Moment de force
	Théorème du moment cinétique
	Mouvement circulaire uniforme

	Loi de la gravitation universelle
	1ère loi de Kepler
	2e loi de Newton
	3e loi de Kepler
	Loi de la gravitation universelle
	Constantes du mouvement
	Orbites gravitationnelles

	Gravitation classique et relativité générale
	Prédictions de la relativité générale
	Cosmologie


	Mouvement relatif
	Système de masse variable
	Poussée d'une fusée
	Condition de décollage et vitesse

	Référentiels accélérés
	Position relative
	Vitesse relative
	Accélération relative
	Forces d'inertie

	Mouvement relatif
	Pendule dans un train accéléré
	Poids apparent
	Centrifugeuse
	Pendule sur une porte tournante


	Dynamique terrestre
	Dynamique terrestre
	Champ gravitationnel terrestre
	Mouvement relatif vertical
	Mouvement relatif horizontal

	Pendule de Foucault
	Système de points matériels
	Centre de masse
	Cinématique d'un système de points matériels
	Dynamique d'un système de points matériels
	Principes de conservation


	Cinématique et dynamique du solide
	Cinématique du solide indéformable
	Solide indéformable
	Angles d'Euler
	Angles de Tait-Bryan
	Vitesse et accélération d'un point du solide indéformable
	Roulement et glissement

	Dynamique du solide indéformable
	Théorèmes de transfert du moment cinétique
	Théorèmes de transfert de moments de force
	Théorèmes du moment cinétique par rapport à un point

	Tenseur d'inertie et équations d'Euler
	Tenseur d'inertie
	Moments d'inertie et axes principaux d'inertie
	Equations d'Euler


	Gyroscope
	Moments d'inertie
	Barre mince
	Cylindre creux
	Cylindre plein

	Solide indéformable avec un axe fixe
	Théorème de Huygens-Steiner
	Energie cinétique du solide indéformable
	Théorème de l'énergie cinétique
	Roue mal équilibrée

	Gyroscope et effets gyroscopiques
	Effets gyroscopiques
	Roue de vélo
	Toupie


	Mécanique quantique
	Introduction historique à la mécanique quantique
	Loi de Planck et effet photoélectrique
	Modèle atomique de Bohr-Sommerfeld
	Mécanique matricielle
	Mécanique ondulatoire

	Fondements de la mécanique quantique
	Espace d'Hilbert et vecteur d'état
	Interprétation statistique de la mesure
	Chat de Schrödinger
	Observables physiques
	Quantité de mouvement
	Hamiltonien
	Opérateur position
	Relations de commutation canoniques
	Principe d'incertitude d'Heisenberg
	Equation de Schrödinger
	Moment cinétique
	Relations de commutation du moment cinétique
	Nombres quantiques associés à la rotation

	Chimie quantique
	Ensemble complet d'observables compatibles
	Atome d'hydrogène
	Orbitales atomiques
	Effet Zeeman
	Spin
	Matrices de Pauli
	Principe d'exclusion
	Tableau périodique des éléments

	Information quantique
	Processus de mesure
	Qubit
	Ordinateur quantique
	Paradoxe EPR
	Intrication quantique
	Interprétations de la mécanique quantique
	Epilogue



