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Etudier la mécanique

1.1 Introduction

Le cours ex-cathedra est constitué de quatorze leçons hebdomadaires de trois heures qui

seront consacrées à développer la théorie de la mécanique et d’une heure dédiée aux appli-

cations de cette théorie. La théorie sera bien sûr vérifiée par de belles expériences préparées

avec soin par les préparateurs de cours des auditoires de physique. Les cours seront divisés

en trois sections d’environ une heure chacune.

Pour mieux comprendre les notions théoriques vues au cours et savoir les appliquer dans

des cas concrets auxquels vous serez confrontés dans votre future carrière d’ingénieur, vous

aurez des sessions hebdomadaires de tutorat durant lesquelles vous aurez une série d’exercices

à résoudre. Toutes les informations utiles concernant ce cours sont disponibles sur le site

moodle de ce cours.

1.1.1 Histoire

La racine grecque du mot mécanique est µηξανικη, c’est-à-dire michaniḱı, qui signi-

fie relatif aux machines. L’origine du mot mécanique a donc une signification utilitaire.

Il s’agit de développer une science qui permet de faire fonctionner des machines. En

termes plus modernes, la mécanique est la branche de la physique qui étudie l’équilibre

des systèmes physiques, c’est-à-dire la statique, leur mouvement, c’est-à-dire la dynamique,

et leur déformation.

Lorsqu’on aborde l’étude de la mécanique, on se pose naturellement deux questions fon-

damentales. La première est : “Qu’est-ce que la mécanique ?” et la seconde est : “Pourquoi

est-ce qu’on commence l’étude de la physique par la mécanique ?” Il y a deux réponses à

cela. La première est historique et la seconde est méthodologique et pédagogique.

La raison historique est que la mécanique a permis à la science moderne de nâıtre. Les

premières lois physiques qui ont pu être découvertes sont les lois de Newton. En ayant

bien compris les lois de mécanique, les physiciens des siècles passés ont ensuite peu à peu

découvert les autres lois physiques. La mécanique est en somme le fondement de la physique.

La raison pédagogique est que la mécanique est la branche de la physique qui est la

plus intuitive et la plus facile à modéliser mathématiquement. La mécanique décrit des

expériences qui font partie de la vie de tous les jours, comme une chute sur un plan incliné,

des ressorts, des pendules ou des montres mécaniques. La mécanique introduit des lois de

cause à effet qui permettent de décrire mathématiquement l’évolution d’un système physique

simple. Elle permet donc de se familiariser avec l’emploi des mathématiques comme langage

universel de l’ingénieur. Elle répond donc à l’objectif principal de ce cours de mécanique qui

est de savoir mettre sous forme mathématique un phénomène physique.

Le but de cette introduction à la mécanique est de vous montrer pourquoi la mécanique est

importante pour votre formation. Pour ce faire, je vous propose une perspective historique

qui met en évidence le rôle de la mécanique dans le développement des sciences modernes.

Aristote
Commençons en examinant les conclusions d’Aristote. Aristote a été le disciple de Platon

pendant 20 ans. Fortement inspiré sur le plan philosophique par son mâıtre, Aristote a conclu,

dans son livre De la Physique, qu’il fallait distinguer le monde terrestre corrompu du monde

céleste parfait. Le mouvement des corps célestes est un cercle parfait alors que le mouvement

https://moodle.epfl.ch/enrol/index.php?id=14237
https://moodle.epfl.ch/enrol/index.php?id=14237
https://fr.wikipedia.org/wiki/Aristote
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des corps terrestres est capricieux. Selon Aristote, les lois physiques qui régissent le mouve-

ment des corps terrestres et célestes sont de nature différente. Elles sont irréconciliables. Le

défaut de la méthodologie d’Aristote réside dans le fait qu’elle n’est pas vraiment scientifique.

La méthodologie scientifique nécessite une interaction entre la théorie et l’expérience. Aris-

tote n’a pas essayé d’interroger la nature, il lui a imposé ses présupposés philosophiques... Il a

développé sa théorie dans sa tour d’ivoire et ne l’a pas proprement confrontée à l’expérience.

Il a fallu attendre presque deux millénaires pour que ce paradigme aristotélicien soit remis

en cause.

Galileo Galilei

Le nouveau paradigme a commencé à émerger au XVIe siècle grâce notamment aux tra-

vaux de Galileo Galilei dit Galilée. Galilée est un des pionniers de l’expérimentation scienti-

fique de la nature. En faisant interagir l’expérience et la théorie, Galilée permet à la science

moderne de nâıtre. Il fallait un langage pour interroger la Nature et ce langage, c’est celui des

mathématiques. Par ses observations, il conclut que le mouvement rectiligne uniforme d’un

corps est son mouvement naturel. Toute déviation de cette uniformité est attribuée à une

force. Ceci est a été qualifié de principe d’inertie. Galilée définit également le mouvement rec-

tiligne uniformément accéléré. Pour lui, cette définition est utile, parce qu’elle représente un

mouvement qui s’observe dans la nature : la chute des corps. Il démontre expérimentalement

que le mouvement de chute libre est bien un mouvement uniformément accéléré. Galilée a

également prédit que dans le vide, une plume tomberait à la même vitesse qu’une masse de

plomb. Cette expérience a été réalisée après sa mort par son disciple Torricelli et le résultat

a été concluant. Lors de la mission spatiale Apollo 15, cette expérience a été effectuée avec

une plume et un marteau devant des millions de téléspectateurs. Galilée est le père de la

cinématique et le grand-père de la dynamique. Sans lui, Newton n’aurait probablement pas

pu découvrir les lois de la dynamique.

Un autre personnage important dans le développement de la science est Johannes Kepler.

Kepler s’est autant intéressé à l’astronomie qu’à l’astrologie. En se basant sur les observations

précises de Tycho Brahé sur les orbites planétaires, Kepler a déduit trois lois mathématiques

régissant la mécanique céleste, c’est-à-dire le mouvement des planètes autour du soleil. La

première loi est la loi des orbites. Elle stipule que les planètes du système solaire se déplacent

selon des orbites elliptiques dont le Soleil occupe l’un des foyers. La deuxième loi est la loi

des aires. Elle stipule que l’aire balayée par unité de temps par le mouvement de la planète

autour du soleil est une constante. La troisième loi est la loi des périodes. Elle stipule que le

rapport de la période de rotation au carré divisé par le demi-grand axe de l’ellipse au cube

est une constante. Ces lois de la mécanique céleste de Kepler sont un exemple absolument

remarquable de modélisation mathématique à partir de données expérimentales. Elles ont

joué un rôle central dans la découverte de la loi de la gravitation universelle par Newton.

Johannes Kepler

Isaac Newton

Isaac Newton est probablement le plus grand physicien de tout les temps. Newton a

fait des études de mathématiques au Trinity College à Cambridge. A l’aide du principe

d’inertie de Galilée et des lois de Kepler, Newton découvre les lois de la mécanique et

les expose dans son célèbre livre Philosophiae Naturalis Principia Mathematica, c’est-à-

dire les principes mathématiques de la philosophie naturelle. Pour énoncer ces lois, il pose

les bases du calcul différentiel et intégral. Newton est un génie sans égal tant sur le plan

mathématique que sur le plan physique ! Grâce à Newton, la mécanique est devenue une

théorie physique clairement exprimée dans le langage des mathématiques. De plus, le calcul

différentiel et intégral de Newton permet de faire des prédictions en déterminant les solutions

mathématiques de la théorie physique de Newton. Si un jour vous vous rendez à Cambridge,

je vous recommande de visiter la Wren Library où vous trouverez un exemplaire original

des Principia Mathematica avec une boucle de cheveux dorés de Newton. Vous pourrez

ensuite voir sa statue dans la chapelle du College. Pour l’anecdote, le meilleur étudiant de

première année en mathématiques du Trinity College à Cambridge a le privilège de choisir

sa chambre d’étudiant pour la deuxième année de ses études. La tradition veut qu’il choisisse

la chambre où Newton a lui-même fait ses études, qui surplombe le pommier qui selon la

légende a fortement inspiré le jeune Isaac.

https://fr.wikipedia.org/wiki/Galileo_Galilei
https://fr.wikipedia.org/wiki/Johannes_Kepler
https://fr.wikipedia.org/wiki/Isaac_Newton
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1.1.2 Objectifs

Le principal objectif dans l’apprentissage de la mécanique, c’est d’apprendre à décrire un

phénomène physique en utilisant le langage des mathématiques. L’analyse d’un phénomène

physique commence par une modélisation d’un système physique sur le plan conceptuel.

Cette modélisation doit être formalisée de manière claire. Pour ce faire, on utilise le lan-

gage universel des mathématiques. On transcrit donc le modèle du phénomène physique

sous forme mathématique. On applique alors les lois physiques et on aboutit à un système

d’équations différentielles qui régissent l’évolution dans le temps du système étudié.

Il est essentiel d’apprendre à reconnâıtre les limites d’applicabilité des modèles et des

théories physiques qu’on utilise. Par exemple, on commencera notre étude de la mécanique

avec le modèle du point matériel et on se posera la question de savoir dans quelle mesure

on peut se contenter de ce modèle. Un cours de mécanique n’est pas un cours qui exige de

mémoriser un grand nombre de lois ou d’équations. C’est un savoir-faire qu’on développe

progressivement en essayant de modéliser mathématiquement toute une série d’expériences

physiques choisies, comme la collision d’une balle de fusil sur une cible ou la destruction

d’un verre par résonance acoustique (Fig. 1.1).

Figure 1.1 Lorsque la cible est en verre, la balle de fusil conserve sa quantité de mouve-
ment. Lorsque la cible est en bois, la balle de fusil transmet sa quantité de mouvement à la
cible. Lorsque le verre est excité acoustiquement à l’aide d’un haut-parleur à sa fréquence
de résonance, il est d’abord déformé puis, il se casse.

Sur le plan pratique, c’est d’abord en résolvant des problèmes concrets qu’on apprend

vraiment la mécanique. Je vous encourage donc vivement de participer à toutes les sessions

d’exercices et d’essayer, autant que possible, de résoudre les exercices par vous-même. On

vous apprend aussi à adopter une démarche systématique. Il ne s’agit pas de repérer l’astuce

subtile qui permet d’obtenir le bon résultat le plus efficacement. Non ! Il s’agit d’appliquer

systématiquement l’approche tout-terrain qu’on va élaborer dans ce cours.

Dans un cours de mécanique, on apprend à utiliser des outils mathématiques en de-

hors du contexte mathématique dans lequel ils sont normalement enseignés. On verra que

cela n’est pas toujours évident. Il arrive souvent qu’un enseignant de physique utilise un

outil mathématique qui n’a pas encore été vu formellement par ses étudiants dans le

cadre d’un cours de mathématiques. Quand cela m’arrivera, j’introduirai proprement l’outil

mathématique en question. Ce sera pour vous l’occasion d’être sensibilisé à l’importance

de cet outil mathématique et d’être motivé quand le sujet surviendra dans un cours de

mathématiques. Vous pourrez ainsi découvrir les mathématiques de manière ludique par la

physique.

1.1.3 Limites

Etudier la mécanique, c’est s’inscrire dans une longue tradition scientifique. La mécanique

de Newton a triomphé durant trois siècles, mais à la fin du XIXe siècle, son universalité a

été remise en cause. Son domaine d’applicabilité est toujours encore très important, mais il

n’est pas universel.

L’immense succès de la mécanique de Newton a laissé penser aux physiciens que toute

réalité physique pouvait être expliquée de manière déterministe. Ce déterminisme triom-

phant est bien illustré par le Marquis Simon de Laplace qui aurait affirmé à l’empereur

Napoléon Bonaparte : “Donnez-moi les conditions initiales et je vous prédirai l’évolution du

https://www.youtube.com/watch?v=47cPhhywvOo
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monde”. Laplace était convaincu qu’un jour on disposerait d’une équation qui puisse prédire

entièrement l’évolution du monde à partir des conditions initiales.

A la fin du XIXe siècle, Henri Poincaré a montré que les équations différentielles décrivant

des systèmes physiques très simples peuvent avoir des solutions très complexes. Il faudra

attendre 1960 pour que ces idées se popularisent notamment par Edward Lorenz et David

Ruelle sous le nom de théorie du chaos. Deux pendules articulés ou une balle de ping-

pong mise en mouvement par un vibreur régulier peuvent avoir un mouvement chaotique

(Fig. 1.2).

Jules Henri Poincaré

Figure 1.2 Si les deux pendules articulés sont lancés avec de faibles amplitudes initiales
comparables, leurs mouvements restent synchronisés. A grandes amplitudes initiales com-
parables, leurs mouvements se désynchronisent très rapidement. Une balle de ping-pong
rebondit sur une plateforme astreinte à un mouvement périodique bien déterminé. Lorsque
le tube est ouvert, la fréquence des rebonds est aléatoire. Avec le frottement imposé par le
bouchon, le mouvement devient périodique.

Le début du XXe siècle est le témoin de deux révolutions physiques qui vont définitivement

remettre en cause l’universalité de la mécanique newtonienne. La relativité restreinte,

développée par Hendrik Antoon Lorentz et Jules Henri Poincaré et finalisée par Albert

Einstein, montre que pour des vitesses suffisamment proches de la vitesse de la lumière, la

mécanique newtonienne n’est plus valable. Elle doit être remplacée par la mécanique rela-

tiviste. Vingt ans plus tard, Erwin Schrödinger, Werner Heisenberg et Paul Dirac montrent

qu’à petite échelle la mécanique newtonienne doit être remplacée par la mécanique quan-

tique.

1.1.4 Expériences

Les expériences ont une importance historique. Depuis Galilée, la physique s’enseigne en

démontrant expérimentalement les phénomènes qu’on veut décrire par des lois.

Les expériences ont aussi une importance symbolique. Les démonstrations d’auditoire nous

rappellent que la physique ne peut pas se construire ex-nihilo. La méthodologie scientifique

consiste en une démarche hypothético-déductive. On fait des hypothèses que l’on vérifie

ensuite expérimentalement. Il ne faut jamais oublier que toute théorie physique se construit

par une confrontation à l’observation des phénomènes naturels ! Sinon, vous feriez mieux

d’aller suivre le cours de mathématiques ou le cas échéant celui de philosophie... A ce propos,

il est pertinent de citer la mise en garde de James Clerk Maxwell, le physicien qui a unifié les

phénomènes électriques et magnétiques : “Je n’ai pas de raison de penser que l’intelligence

humaine est capable de conceptualiser les lois physiques en se basant uniquement sur ses

propres ressources sans faire appel aux résultats expérimentaux. De telles tentatives se sont

toujours soldées par des théories artificielles et pleines de contradictions.”

James Clerk Maxwell
Finalement, les expériences ont une importance méthodologique. En observant une

expérience, on réalise mieux que la mécanique consiste en modèles simples, et parfois trop

simplistes, qui idéalisent une réalité matérielle complexe. L’observation des expériences vous

encourage à repérer ces phénomènes démontrés au cours dans la vie quotidienne, ce qui

constitue un excellent entrainement à la curiosité scientifique.

https://fr.wikipedia.org/wiki/Henri_Poincar%C3%A9
https://www.youtube.com/watch?v=63uVU3GR-qI
https://www.youtube.com/watch?v=RvoBFSuCriw
https://fr.wikipedia.org/wiki/James_Clerk_Maxwell


1.2. CALCUL DIFFÉRENTIEL 5

1.1.5 Livre

Ce cours est basé sur le livre de Mécanique du Professeur Jean-Philippe Ansermet publié

aux Presses polytechniques et universitaires romandes (2e édition largement remaniée en

2013). Les références à ce livre sont données au début de chaque section. Je vous recommande

donc vivement de vous en procurer une copie.

Mécanique

(parties 1, 2, 3)

1.1.6 MOOC

L’acronyme MOOC désigne en anglais un Massive Open Online Course. En français,

l’acronyme est CMELL et désigne un Cours Massif en Ligne Libre. Ces cours sont en accès

libres dans le monde entier et des milliers d’étudiants les suivent. Les deux plus grandes

plateformes de MOOC sont Coursera, géré par une start-up de Stanford, et EdX, géré

par une start-up du MIT. Le Professur Ansermet, qui a été le directeur de la section de

physique et qui a enseigné la mécanique pendant plus de vingt ans à l’EPFL a lancé un

MOOC de mécanique en français sur Coursera. Ce cours couvre l’équivalent du programme

de mécanique de la section de physique, c’est-à-dire un cours de quatre heures par semaine

durant un semestre. Le cours que je vous donne a une structure proche de celle du MOOC,

mais certains sujets avancés comme la relativité et la mécanique analytique ne seront pas

abordés dans ce cours. C’est la raison pour laquelle, je vous encourage donc de vous inscrire

sur Coursera et de suivre le MOOC.

MOOC

1.2 Calcul différentiel

La dérivation permet de déterminer le taux de variation d’une fonction lorsqu’on varie

la variable dont elle dépend. On appelle dérivée la limite infinitésimale du rapport de la

variation de la fonction et de la variation de la variable correspondante.

1.2.1 Dérivées d’une fonction

Dans le contexte de la mécanique, on cherche le plus souvent à déterminer l’évolution

temporelle d’un système. On considère donc ici des fonctions du temps t qu’on suppose être

un paramètre réel continu, c’est-à-dire t ∈ R. A titre d’exemple, on choisit comme fonction du

temps t la coordonnée de position x (t) le long d’un axe fixe. On suppose que la coordonnée de

position est une fonction continue et deux fois dérivable, c’est-à-dire x (t) ∈ C2 (R). La vitesse

scalaire v (t) le long de l’axe de coordonnée est définie comme la dérivée de la coordonnée

de position x (t) par rapport au temps t. Elle s’écrit explicitement comme,

v (t) = lim
∆t→0

∆x (t)

∆t
= lim

∆t→0

x (t+ ∆t)− x (t)

∆t
(1.1)

Les physiciens utilisent la lettre d pour représenter la limite infinitésimale d’une variation

∆. L’expression (1.1) de la vitesse v ≡ v (t) peut donc être écrite comme,

v =
dx

dt
=
x (t+ dt)− x (t)

dt
ainsi dx = v dt (1.2)

Géométriquement, la dérivée v (t) représente la pente de la tangente à la fonction x (t) au

temps t (Fig. 1.3).

En effet, dans la limite d’une variation infinitésimale, l’intervalle de temps ∆t se réduit à

l’intervalle de temps infinitésimal dt et la variation de coordonnée ∆x se réduit à la variation

infinitésimale de position dx. Compte tenu de l’équation (1.2), on a montré que dx = v dt,

ce qui implique que la vitesse scalaire v est bien la pente de la dérivée de la coordonnée de

position x.

L’accélération scalaire a (t) le long de l’axe de coordonnée est définie comme la dérivée de

la vitesse scalaire v (t) par rapport au temps t qui s’écrit explicitement comme,

a (t) = lim
∆t→0

∆v (t)

∆t
= lim

∆t→0

v (t+ ∆t)− v (t)

∆t
(1.3)

http://www.ppur.org/produit/478/9782889150243
https://issuu.com/ppur-epflpress/docs/mecanique-1?e=18780271/30292110
https://issuu.com/ppur-epflpress/docs/mecanique-2?e=18780271/30293648
https://issuu.com/ppur-epflpress/docs/mecanique-3?e=18780271/30292027
https://www.coursera.org/learn/mecanique-newton
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Figure 1.3 La vitesse scalaire v (t) est la pente de la tangente à la fonction coordonnée
de position x (t) au temps t.

En notation de physicien, l’accélération scalaire a ≡ a (t) s’écrit comme,

a =
dv

dt
=
v (t+ dt)− v (t)

dt
ainsi dv = a dt (1.4)

L’accélération scalaire a (t) est donc la dérivée seconde de la coordonnée de position x (t).

En substituant l’expression (1.1) de la vitesse dans celle de l’accélération (1.3), on obtient,

a (t) ≡ d2x

dt2
= lim

∆t→0

∆

(
lim

∆t→0

∆x (t)

∆t

)
∆t

=

d

(
dx (t)

dt

)
dt

(1.5)

En notation de physicien, l’accélération scalaire a ≡ a (t) s’écrit explicitement comme,

a =
d

dt

(
dx

dt

)
=

(
d

dt

)2

x =
d2x

dt2
(1.6)

Pour les dérivées d’une fonction par rapport au temps t, et uniquement par rapport au

temps, les physiciens utilisent une notation abrégée qui consiste à remplacer la fraction par

un point. Compte tenu des expressions (1.2), (1.4) et (1.6), en notation abrégée la vitesse

scalaire s’écrit,

v = ẋ (1.7)

et l’accélération scalaire s’écrit,

a = v̇ = ẍ (1.8)

1.2.2 Dérivée d’une composition de fonctions

En mécanique on est souvent confronté à des compositions de fonctions du temps dont on

doit déterminer la dérivée par rapport au temps. On considère à présent le cas où la fonction

h (t) est une composition de fonctions qui est définie comme la composition d’une fonction

f (g) et d’une fonction g (t), c’est-à-dire

h (t) ≡ (f ◦ g) (t) = f (g (t)) (1.9)

La dérivée de la fonction g (t) par rapport au temps s’écrit,

dg

dt
=
g (t+ dt)− g (t)

dt
ainsi g (t+ dt) = g (t) + dg (1.10)

De manière similaire, la dérivée de la composition de fonctions f (g) par rapport à la fonction

g s’écrit,

df

dg
=
f (g + dg)− f (g)

dg
ainsi f (g + dg) = f (g) + df = f (g) +

df

dg
dg (1.11)
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Compte tenu des expressions (1.10) et (1.11), la dérivée de la composition de fonctions x (t)

par rapport au temps s’écrit,

dh

dt
=
f (g (t+ dt))− f (g (t))

dt
=
f (g (t) + dg)− f (g (t))

dt
=
��

��f (g (t)) +
df

dg
dg −����f (g (t))

dt
(1.12)

Par conséquent, la dérivée de la composition de fonctions h (t) par rapport au temps t nous

donne la règle de la dérivation en châıne de la composition de fonctions f (g (t)) par rapport

au temps t,

dh

dt
=
d (f ◦ g)

dt
=
df

dg

dg

dt
(1.13)

A présent, on va considérer deux applications physiques de cette dérivation d’une com-

position de fonctions. La première est un oscillateur harmonique à une dimension dont la

coordonnée de position est définie comme,

x (t) = A cos (ωt+ ϕ) (1.14)

où A est l’amplitude d’oscillation, ω est la pulsation et ϕ est l’angle de déphasage. Les

grandeurs A, ω et ϕ sont des constantes. En appliquant la règle de dérivation (1.13) on

obtient la vitesse d’oscillation,

dx

dt
=
d (A cos (ωt+ ϕ))

d (ωt+ ϕ)

d (ωt+ ϕ)

dt
= −Aω sin (ωt+ ϕ) (1.15)

La seconde est l’énergie cinétique d’un objet de masse m constante en translation le long de

l’axe de coordonnée x (t),

T (t) =
1

2
mẋ2 (1.16)

En appliquant la règle de dérivation (1.13) on obtient la puissance mécanique appliquée sur

l’objet,

dT

dt
=

d

(
1

2
mẋ2

)
dẋ

dẋ

dt
= mẋ︸︷︷︸

force

ẍ︸︷︷︸
vitesse

(1.17)

1.2.3 Développement limité d’une fonction

Le développement limité d’une fonction, aussi appelé le développement de Taylor

d’une fonction en référence au mathématicien Brook Taylor, est une approximation de l’ex-

pression d’une fonction dans le voisinage d’une valeur fixée de la variable.

Brook Taylor
Compte tenu des équations (1.1) et (1.2), la dérivée de la fonction f (x) par rapport à la

variable x s’écrit,

df

dx
=
f (x+ dx)− f (x)

dx
= lim

∆x→0

f (x+ ∆x)− f (x)

∆x
(1.18)

Ainsi, la fonction f (x+ dx) évaluée à l’instant x + dx s’exprime en terme de la fonction

f (x) évaluée à l’instant x comme,

f (x+ dx) = f (x) +
df

dx
dx (1.19)

Dans cette expression, il n’y a pas d’approximation puisque l’intervalle dx est infinitésimal.

On désire trouver une expression analogue lorsque l’intervalle ∆x n’est pas infinitésimal.

Dans le cas où l’intervalle ∆x n’est pas infinitésimal mais suffisamment petit, c’est-à-dire

∆x� x, on peut faire l’approximation suivante pour la dérivée,

df

dx
' f (x+ ∆x)− f (x)

∆x
(1.20)

Dans ce cas, la relation (1.20) multipliée par ∆x nous conduit à l’approximation suivante,

f (x+ ∆x) ' f (x) +
df

dx
∆x (1.21)

https://fr.wikipedia.org/wiki/Brook_Taylor
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appelée développement limité, ou développement de Taylor, au premier ordre en ∆x de la

fonction f (x+ ∆x) autour de x.

1.3 Calcul vectoriel

A présent, on va introduire les outils de géométrie vectorielle dont on a besoin pour faire

de la mécanique. Les grandeurs cinématiques comme la position, la vitesse et l’accélération

sont des grandeurs vectorielles, car elles sont caractérisées par une norme et une orientation

spatiale. Il y a deux moyens de multiplier des vecteurs ; soit on obtient un scalaire soit

un autre vecteur. Le premier produit s’appelle un produit scalaire et le second un produit

vectoriel.

Josiah Willard Gibbs

Le produit vectoriel a été introduit par Josiah Willard Gibbs afin de pouvoir décrire les

rotations dans le cadre d’un espace vectoriel. L’espace vectoriel n’est pas nécessairement le

cadre mathématique le plus adapté pour l’étude de la cinématique et de la dynamique. On

pourrait aussi l’étudier dans le cadre de l’algèbre géométrique qui permet de mieux visualiser

les phénomènes mais présente le désavantage d’être moins répandu et parfois plus ardu et

subtil pour les manipulations algébriques. Cependant, ici on va se restreindre à l’espace

vectoriel.

1.3.1 Repère direct

x3

x1

x2

^

^

^

Règle de la main

droite

Dans la pratique, on a souvent besoin d’exprimer un vecteur en termes de ses composantes

projetées dans un repère. Dans l’espace, un repère est une entité géométrique constituée de

trois vecteurs non-nuls et non-colinéaires attachés à un point. Un repère est orthonormé si

les trois vecteurs sont orthogonaux et de norme unité. Ces vecteurs n’ont pas de dimension

physique. Un repère orthonormé est un repère direct s’il satisfait la règle de la main droite,

c’est-à-dire que si le premier vecteur est orienté selon l’index de la main droite et que le

deuxième vecteur est orienté selon le majeur de la main droite alors le troisième vecteur est

orienté selon le pouce de la main droite. Cette orientation particulière s’appelle la chiralité

dextrogyre. Le choix de la main est une convention historique. On aurait tout aussi bien pu

choisir la règle opposée de la main gauche obtenue par image miroir. Un repère qui satisfait

la règle de la main gauche est un repère indirect. Dans ce cours, on considérera que des

repères directs. Les repères peuvent être fixes ou mobiles suivant que leurs points d’attache

et leur orientation changent ou non.

Les scalaires sont des nombres, les vecteurs sont des éléments de droite définis par une

norme et une orientation et les tenseurs − de rang 2 − sont des applications linéaires qui

envoient des vecteurs sur d’autres vecteurs. Il est donc utile de les distinguer. Dans ce cours,

on adoptera la convention de notation usuelle en mécanique et en physique qui consiste à

écrire les scalaires en police normale, les vecteurs en gras et les tenseurs en sans-serif.

x1 x2

x3

O
x1

x2

x3

^
^

^

Figure 1.4 Repère cartésien direct (x̂1, x̂2, x̂3).

https://fr.wikipedia.org/wiki/Josiah_Willard_Gibbs


1.3. CALCUL VECTORIEL 9

Un repère cartésien direct s’écrit mathématiquement comme (x̂1, x̂2, x̂3) où x̂1, x̂2 et

x̂3 sont les vecteurs de base fixes, de norme unité et orthogonaux entre eux. Ces vecteurs

satisfont la règle de la main droite (Fig. 1.4).

Une convention équivalente consiste à considérer la règle du tire-bouchon. Si le mouve-

ment de rotation s’effectue dans un plan du vecteur x̂1 vers le vecteur x̂2 alors le tire-bouchon

s’enfonce dans la direction définie par le vecteur x̂3.

Règle du tire-bouchon

1.3.2 Produit scalaire

Le produit scalaire de deux vecteurs est un scalaire obtenu par produit symétrique

des coordonnées identiques de ces vecteurs exprimées par rapport à un repère direct. On

considère deux vecteurs a et b exprimés comme combinaisons linéaires des vecteurs de base

du repère cartésien direct (x̂1, x̂2, x̂3),

a = a1 x̂1 + a2 x̂2 + a3 x̂3

b = b1 x̂1 + b2 x̂2 + b3 x̂3

(1.22)

où (a1, a2, a3) et (b1, b2, b3) sont les coordonnées cartésiennes de ces vecteurs. Le produit

scalaire entre les vecteurs a et b s’écrit,

a · b = a1 b1 + a2 b2 + a3 b3 (1.23)

ce qui implique que le produit scalaire est commutatif, c’est-à-dire qu’on peut échanger

l’ordre des vecteurs sans changer l’expression du produit scalaire,

a · b = b · a (1.24)

En substituant les expressions (1.22) des vecteurs a et b, exprimés comme combinaisons

linéaires des vecteurs de base x̂1, x̂2 et x̂3 du repère cartésien, dans la définition (1.23)

du produit scalaire, on conclut que le produit scalaire des vecteurs de base est de la forme

suivante,

x̂i · x̂j = δij ∀ i, j = 1, 2, 3 (1.25)

où le symbole de Kronecker est un scalaire défini comme

δij =

{
1 si i = j

0 si i 6= j
(1.26)

Afin d’établir quelques propriétés importantes du produit scalaire, on peut considérer en

toute généralité que les vecteurs a et b ont la même origine. Le vecteur a peut s’écrire

comme la somme vectorielle d’un vecteur a‖ parallèle au vecteur b et d’un vecteur a⊥
perpendiculaire au vecteur b,

a = a‖ + a⊥ (1.27)

On oriente le repère cartésien (x̂1, x̂2, x̂3) tel que le vecteur b est colinéaire au vecteur x̂2,

le vecteur a est dans le plan engendré par les vecteurs x̂1 et x̂2 et l’orientation du vecteur

x̂3 est définie par la règle de la main droite. On prend l’origine O à l’intersection entre les

vecteurs a et b. On dénote θ l’angle entre les vecteurs a et b, et ‖a‖ et ‖b‖ leurs normes

(Fig. 1.5). Dans le repère cartésien, les vecteurs a et b s’écrivent,

a = ‖a‖ sin θ x̂1 + ‖a‖ cos θ x̂2

b = ‖b‖ x̂2

(1.28)

La définition (1.25) du produit scalaire des vecteurs de base implique alors que,

a · b = ‖a‖ ‖b‖ cos θ (1.29)

Les parties parallèle et perpendiculaire du vecteur a s’écrivent,

a‖ = ‖a‖ cos θ x̂2 et a⊥ = ‖a‖ sin θ x̂1 (1.30)

On tire alors les trois propriétés suivantes,

(i) a · a = ‖a‖2 (ii) a‖ · b = a · b (iii) a⊥ · b = 0 (1.31)

https://www.youtube.com/watch?v=LHE--4fYUgY
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b

a

a^

a ||

x2

x3

x1

qO

^

^

^

Figure 1.5 Produit scalaire des vecteurs a et b.

1.3.3 Produit vectoriel

Le produit vectoriel de deux vecteurs est un vecteur obtenu par produit antisymétrique

des coordonnées cartésiennes différentes de ces vecteurs et d’un autre vecteur de base du

repère cartésien direct (x̂1, x̂2, x̂3). Le produit vectoriel entre les vecteurs a et b s’écrit,

a× b = (a2 b3 − a3 b2) x̂1 + (a3 b1 − a1 b3) x̂2 + (a1 b2 − a2 b1) x̂3 (1.32)

Cela implique que le produit vectoriel est anticommutatif, c’est-à-dire qu’en échangeant

l’ordre des vecteurs on change son signe,

a× b = − b× a (1.33)

En substituant les expressions (1.22) des vecteurs a et b, exprimés comme combinaisons

linéaires des vecteurs de base x̂1, x̂2 et x̂3 du repère cartésien, dans la définition (1.32) du

produit vectoriel, on conclut que le produit vectoriel des vecteurs de base est de la forme

suivante,

x̂i × x̂j = εijk x̂k ∀ i, j, k = 1, 2, 3 (1.34)

où les composantes du tenseur complètement antisymétrique de Levi-Civita sont des scalaires

définis comme

εijk =


1 pour ε123 , ε231 , ε312

−1 pour ε321 , ε213 , ε132

0 sinon

(1.35)

Par conséquent, x̂i× x̂i = 0 pour tout i = 1, 2, 3. De nombreux auteurs utilisent le symbole

∧ au lieu du symbole × pour représenter le produit vectoriel. On ne va pas adopter cette

convention ici étant donné que le symbole ∧ est réservé au produit extérieur d’une algèbre

géométrique, aussi appelée algèbre de Clifford, alors que le produit vectoriel est défini dans le

cadre d’un espace vectoriel. Le produit extérieur est associatif alors que le produit vectoriel

ne l’est pas. En effet, la définition (1.32) appliquée aux produits vectoriels des trois vecteurs

implique que,

William Kingdon

Clifford

a× (b× c) 6= (a× b)× c (1.36)

Le produit vectoriel peut être défini uniquement dans un espace à trois dimensions. Afin

d’établir quelques propriétés importantes du produit vectoriel, on peut considérer en toute

généralité que les vecteurs a et b ont la même origine. On oriente le repère cartésien

(x̂1, x̂2, x̂3) tel que le vecteur b est colinéaire au vecteur x̂2, le vecteur a est dans le plan

engendré par les vecteurs x̂1 et x̂2 et l’orientation du vecteur x̂3 est définie par la règle de

la main droite. On prend l’origine O à l’intersection entre les vecteurs a et b. On dénote θ

l’angle entre les vecteurs a et b, et ‖a‖ et ‖b‖ leurs normes (Fig. 1.6).

Compte tenu des expressions (1.28) des vecteurs a et b dans le repère cartésien, la

définition (1.34) du produit vectoriel des vecteurs de base implique alors que,

a× b = ‖a‖ ‖b‖ sin θ x̂3 (1.37)

où l’angle θ est aigu. L’interprétation géométrique de l’équation (1.37) est que la norme du

https://fr.wikipedia.org/wiki/William_Kingdon_Clifford
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b

a

a^

a ||

x2

x3

x1

qO

a´b

^

^

^

Figure 1.6 Produit vectoriel des vecteurs a et b.

produit vectoriel de deux vecteurs correspond à la surface du parallélogramme engendré par

ces deux vecteurs et que son orientation est orthogonale à cette surface. Les coordonnées

cartésiennes des vecteurs a‖ et a⊥ sont respectivement (0, ‖a‖ cos θ, 0) et (‖a‖ sin θ, 0, 0).

Compte tenu des relations (1.30), on tire alors les trois propriétés suivantes,

(i) a× a = 0 (ii) a‖ × b = 0 (iii) a⊥ × b = a× b (1.38)

1.3.4 Produit mixte

On considère trois vecteurs a, b et c exprimés comme combinaisons linéaires des vecteurs

de base du repère cartésien direct (x̂1, x̂2, x̂3),

a = a1 x̂1 + a2 x̂2 + a3 x̂3

b = b1 x̂1 + b2 x̂2 + b3 x̂3

c = c1 x̂1 + c2 x̂2 + c3 x̂3

(1.39)

où (a1, a2, a3), (b1, b2, b3) et (c1, c2, c3) sont les coordonnées cartésiennes de ces vecteurs. En

prenant le produit scalaire du vecteur obtenu par produit vectoriel des vecteurs a et b et du

vecteur c, on obtient le produit mixte,

(a× b) · c = (a2 b3 − a3 b2) c1 + (a3 b1 − a1 b3) c2 + (a1 b2 − a2 b1) c3 (1.40)

De la définition (1.40) du produit mixte, on tire alors les deux propriétés suivantes,

(i) (a× b) · c = (b× c) · a = (c× a) · b (ii) (a× b) · a = (a× b) · b = 0 (1.41)

La propriété (i) est une conséquence du fait que ces trois produits mixtes représentent le

volume du prisme engendré par les vecteurs a, b et c, et la propriété (ii) est une conséquence

du fait que le volume d’un prisme de hauteur nulle est nul.

1.3.5 Identité vectorielle

A présent, on va établir une identité vectorielle très importante pour la suite de ce cours.

A l’aide de la définition du produit vectoriel (1.32), on montre que

a× (b× c) =
(
a2 (b1c2 − b2c1)− a3 (b3c1 − b1c3)

)
x̂1

+
(
a3 (b2c3 − b3c2)− a1 (b1c2 − b2c1)

)
x̂2

+
(
a1 (b3c1 − b1c3)− a2 (b2c3 − b3c2)

)
x̂3

(1.42)
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De plus, à l’aide de la définition du produit scalaire (1.23), on montre également que

(a · c) b− (a · b) c =
(

(���a1c1 + a2c2 + a3c3) b1 − (��
�a1b1 + a2b2 + a3b3) c1

)
x̂1

+
(

(a1c1 +���a2c2 + a3c3) b2 − (a1b1 +��
�a2b2 + a3b3) c2

)
x̂2

+
(

(a1c1 + a2c2 +���a3c3) b3 − (a1b1 + a2b2 +��
�a3b3) c3

)
x̂3

(1.43)

En identifiant les équations (1.42) et (1.43) après simplification, on obtient l’identité vecto-

rielle,

a× (b× c) = (a · c) b− (a · b) c (1.44)
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